
Programmation Orientée Objet
en Java

1

ZIDANII ®

Auditoire : BC2
2ème Licence Business Computing

A.U : 2024-2025

Support de cours :

 ali.zidani@isaeg.u-gafsa.tn

 http://ali-zidanii.e-monsite.com/

Enseignant : Ali ZIDANII

Références bibliographiques

 Initiation à la programmation orientée objet en
Java : Rappels de cours et exercices corrigés,
Ben Othmane Chiraz Zribi, Centre de Publication
Universitaire, 2003.

 La programmation objet en java, Michel Divay,
Dunod, 2006

 Exercices en java, Claude Delannoy, Eyrolles,
2ème édition, 2006

Cours programmation orientée objet en Java
Wassim Messaoudi, 2012.

Cours programmation orientée objet en Java
Walid SAAD, 2015.

2

Plan du cours
 Chapitre 1 : L’approche Orienté Objet (5)

1. Programmation traditionnelle vs orientée objet

2. P.O.O : L’Abstraction

3. Apports de l’approche objet

4. Caractéristiques de l’approche objet

 Chapitre 2 : Introduction au langage Java (27)

1. Historique du langage Java

2. Caractéristiques du langage Java

3. Exemple d’une application Java

4. Les bases du langage Java

 Chapitre 3 : Syntaxe du langage (44)

1. Les types de données

2. Les structures de contrôle

3. Les structures de répétition

 Chapitre 4 : Éléments de Programmation Java (76)

1. Variables?

2. Méthodes

3. Classes

3

Plan du cours (2)
 Chapitre 5 : Héritage

1. Redéfinition

2. Polymorphisme

3. Interfaces

4.classes abstraites

 Chapitr6 : Gestion des exceptions (113)

1. Déclaration

2. Interception et traitements.

3. Classes d’exception

 Chapitre 7 : Les entrées/ sorties simple

1. Flux d’entrée

2. Flux de sortie

 Chapitre 8 : Les interfaces graphiques en Java

1. AWT

2. Swing

3. GUI

4

Chapitre 1 :

1. Programmation traditionnelle vs orientée objet

2. P.O.O : L’Abstraction

3. Apports de l’approche objet

4. Caractéristiques de l’approche objet

5

ZIDANII ®

L’approche Orientée Objet

L’approche Orienté Objet

 Les langages de programmation ont connu une
évolution historique remarquable caractérisée par
une volonté continue d’améliorer leur niveau
expressif, leur niveau d’abstraction et la qualité des
logiciels qu’ils permettent d’obtenir.

 La programmation orientée objet existe depuis
l’arrivée du langage Simula en 1967. Cependant, elle
n’est vraiment devenue un des paradigmes de la
programmation qu’au milieu des années 1980.

 Au contraire de la programmation structurée
traditionnelle, la programmation orientée objet met
dans une même et unique structure les données et
les opérations qui leurs sont associées.

6

Introduction

1. Programmation traditionnelle VS Orientée Objet

 En programmation traditionnelle,
les données et les opérations sur
les données sont séparées, les
structures de données sont donc
envoyées aux procédures et
fonctions qui les utilisent.

7

 En programmation orientée objet :
 Pas de séparation des données

et des actions.
 Chaque objet peut invoquer

une méthode d’un autre objet
qui coopère en répondant à
cette demande.

L’approche Orienté Objet

2. P.O.O : Notion d’Objet (1)
8

L’approche Orienté Objet

2. P.O.O : Notion d’Objet (2)
9

L’approche Orienté Objet

3. Caractéristiques de l’approche objet (1)
Alan Kay résume ainsi cinq caractéristiques principales de l’approche objet :

 Toute chose est un objet, il faut penser à un objet comme à une
variable améliorée : il stocke des données, mais on peut «
effectuer des requêtes » sur cet objet, lui demander de faire des
opérations sur lui-même.

 Un programme est un ensemble d'objets qui communiquent entre
eux en s'envoyant des messages. Pour qu'un objet effectue une
requête, on «envoie un message» à cet objet. Plus concrètement,
un message est un appel à une fonction appartenant à un objet
particulier.

 Chaque objet possède son propre espace de mémoire composé
d'autres objets. On peut ainsi cacher la complexité d'un
programme par la simplicité des objets mis en œuvre.

 Chaque objet est d'un type précis, chaque objet est une instance
(ou une réalisation) d'une classe.

 Tous les objets d'un type particulier peuvent recevoir le même
message.

10

L’approche Orienté Objet

3. Caractéristiques de l’approche objet (2)
L’approche Objet est donc fondée sur :

 La notion d’encapsulation qui permet de définir des classes qui
contiennent des attributs et des méthodes :

 L'encapsulation des données et du code dans une même entité
permet de garantir la cohérence des objets. Cette cohérence est
indispensable pour réutiliser un objet dans un autre contexte.

 Il est possible de changer le fonctionnement interne d'un objet
particulier, sans modifier la manière de l'utiliser (c'est à dire le
reste du programme)

 La notion d’héritage qui permet de réutiliser les propriétés
partagées entre les objets afin de : Diminuer le volume de travail à
faire, réduire les sources d’erreurs, Ne pas refaire ce qui a été
réalisé, réduire la complexité, etc.

 La notion de polymorphisme qui permet de manipuler de
manière identique et la plus naturelle possible des objets ayant
des comportements totalement différents.

11

L’approche Orienté Objet

4. Apports de l’approche Objet (1)

 L’approche objet offre :
 Un niveau d’abstraction facilitant la modélisation du

monde réel et la réduction de la complexité des
problèmes à résoudre.

 Des outils d’analyse et de conception permettant de
promouvoir la réutilisation et le partage des codes et
des conceptions

 Des techniques de programmation augmentant la
productivité des logiciels et facilitant leur maintenance..

 Sécuriser les programmes en interdisant ou autorisant
l’accès aux objets et aux autres parties du programme,

12

L’approche Orienté Objet

5. P.O.O : L’Abstraction (1)
 L'abstraction dans l’approche objet permet la

représentation des entités du monde réel sous forme
d’entités informatiques de la manière la plus
naturelle.

 Etablir une association entre le modèle du problème
à résoudre et le modèle de la machine :

13

L’approche Orienté Objet

 L’abstraction est une représentation des éléments du monde réel
«objets réels» dans l'espace du problème (la machine) en tant
qu'«objets informatiques».

Décrire le problème avec les termes mêmes du problème
plutôt qu'avec les termes de la machine.

 un programme traitant des images doit manipuler des structures de données
représentant des images, et non leur traduction sous forme de suite de 0 et de 1.

 un programme de gestion de personnel doit représenter des personnes avec toutes
les informations pertinentes, qu’il s’agisse de texte, de date, de nombres ou autre.

 L'idée est d’adapter le programme à l'esprit du problème réel en
ajoutant de nouveaux types « objets ».

Quand on lit le code décrivant la solution, on lit aussi quelque chose
qui décrit le problème.

14

L’approche Orienté Objet

5. P.O.O : L’Abstraction (2)

5. P.O.O : L’Abstraction (3)

 La complexité des problèmes et la capacité à les
résoudre sont directement proportionnelles au type
et à la qualité de nos capacités d'abstraction.

 Plusieurs niveaux d’abstraction pour un objet:
 de point de vue concepteur, un ordinateur est un

objet formé d’un ensemble d’éléments physiques
appelés matériels (hardware).

 de point de vue informaticien, un ordinateur est un
objet résultant d’un assemblage hardware et d’un
ensemble de programmes appelé logiciels
(software).

 de point de vue utilisateur, un ordinateur est une
boite noire qui offre un certain nombre de fonctions
ou de services qui permettent d’interagir avec elle.

15

L’approche Orienté Objet

L’approche Orienté Objet

6. Encapsulation
16

L’approche Orienté Objet

7. Notion de classe
17

7. Notion de classe : Mode de fonctionnement

L’approche Orienté Objet
18

7. Notion de Classes: sous classes et instances

L’approche Orienté Objet
19

L’approche Orienté Objet

7. Notion de Classes: sous classes et instances
20

L’approche Orienté Objet

7. Notion de Classes: sous classes et instances
21

L’approche Orienté Objet

8. Héritage (1)
22

L’approche Orienté Objet

8. Héritage (2)
23

L’approche Orienté Objet

9. Polymorphisme (1)
24

L’approche Orienté Objet

9. Polymorphisme (2)
25

Conclusion
Ce cours se propose d’introduire et de

clarifier la terminologie, les concepts et
les techniques de base associées à
l’approche objet et de les appliquer au
langage de programmation Java.

 Ce cours présente d’abord le langage
Java, ses concepts de base, son
syntaxe, etc. Puis, le troisième chapitre
invoque la Programmation Orientée
Objet en Java.

26

L’approche Orienté Objet

Chapitre 2 :

1. Historique du langage Java

2. Caractéristiques du langage Java

3. Exemple d’une application Java

4. Les bases du langage

27

ZIDANII ®

Introduction au langage
Java

Introduction au langage Java

 1990 : Sun Développe un nouveau langage plus adapté à
la réalisation de logiciels embarqués, appelé OAK par :

 Petit, fiable et indépendant de l'architecture

 Destiné à la télévision interactive

 Non rentable sous sa forme initiale

 1993 : le WEB « décolle », Sun redirige ce langage vers
Internet : les qualités de portabilité et de compacité du
langage OAK en ont fait un candidat parfait à une
utilisation sur le réseau. Cette réadaptation prit près de 2
ans.

 1995 : Sun changeOAK en Java (nom de la machine à
café autour de laquelle se réunissait James Gosling et ses
collaborateurs)

 1996 : Les Java Développement Kits (JDK) sont disponibles
gratuitement pour la plupart des machines du marché.

28
1. Historique du langage Java

Introduction au langage Java

 Le langage Java est familier :
Java est un langage familier très proche du langage C , C++. Par

exemple:

 Même types de base que C++ (int, float, double, etc.),

Même formes de déclarations que C++,

Même structure de contrôle que C++ (if, while, for, etc.).

 Le langage Java est simple :

Java est un langage simple par rapport au langage C et C++.

 Il n'y a plus de pointeurs et ses manipulations

 Java se charge (presque) de restituer au système les zones
mémoire inaccessibles et ce sans l'intervention du programmeur.

29

2. Caractéristiques du langage Java (1)

Introduction au langage Java

 Le langage Java est orienté objet :
Paquetage pour la réutilisation :

 java.lang : classes de base

 java.io : entrée/sortie

 java.awt : interfaces graphiques

 java.net : communication réseaux (socket et URL)

 java.applet : API Applet

 java.util : classes outils

 Le langage Java est distribué :

Supporte des applications réseaux (protocoles de communication java.net)

 URL : permet l ’accès à des objets distants

 RMI : Remote Method Invocation

 Programmation d'applications Client/Serveur : classe Socket

 Manipulation de fichier local ou fichier distant identique : indifférence à la
localisation.

30

2. Caractéristiques du langage Java (2)

Introduction au langage Java

 Le langage Java est interprété :

Un programme Java n'est pas compilé en code machine ;

 Il sera compilé en code intermédiaire interprété nommé
ByteCode.

 Lors de l'exécution le ByteCode sera interprété à l’aide d’une
machine dite virtuelle JVM (Java Virtual Machine).

 Le langage Java est portable et indépendant des plates-formes :

Le code intermédiaire produit « ByteCode » est indépendant des
plates-formes.

 Il pourra être exécuté sur tous types de machines et systèmes
pour peu qu'ils possèdent l'interpréteur de code Java « JVM ».

31

2. Caractéristiques du langage Java (3)

Introduction au langage Java

Compilation et exécution d’une application Java :

32

2. Caractéristiques du langage Java (4)

Introduction au langage Java

Compilation et exécution d’une application Java :

33

2. Caractéristiques du langage Java (5)

Introduction au langage Java

Compilation et exécution d’une application Java :
 Byte-code : fichier crée lors de la compilation

d'un programme Java, il ne peut pas être
exécuté directement par le processeur.

 JVM (Java Virtual Machine) : Programme
capable d'interpréter les instructions contenues
dans les fichiers ByteCode Java afin de les
exécuter.

34

2. Caractéristiques du langage Java (6)

Introduction au langage Java

Pour pouvoir faire un programme exécutable il faut toujours une classe
qui contienne une méthode particulière, la méthode «main»

c’est le point d’entrée dans le programme : le microprocesseur sait qu’il
va commencer à exécuter les instructions à partir de cet endroit.

Package bonjour;
public class Bonjour{

public static void main(String args[])
{

//code java
System.out.println(" Bonjour ! ");

}
}

35

3. Exemple d’une application Java (1)

Introduction au langage Java
36

3. Exemple d’une application Java (2)

Introduction au langage Java
37

3. Exemple d’une application Java (3)

Introduction au langage Java
38

3. Exemple d’une application Java (4)

Introduction au langage Java
39

3. Exemple d’une application Java (4)

class Rectangle {
int longueur;
int largeur;
int origine_x;
int origine_y;
void deplace(int x, int y) {
this.origine_x = this.origine_x + x;
this.origine_y = this.origine_y + y;
}
int surface() {
return this.longueur * this.largeur;
}
}

Introduction au langage Java
40

4. Méthode constructeur

class Rectangle {
...

Rec tang le(int lon , in t la r) {
this.longueur = lon;
this.largeur = lar ;
this.origine_x = 0;
this.origine_y = 0;

}
…

}

Chaque classe doit définir une ou plusieurs méthodes particulières appelées
des constructeurs. Un constructeur est une méthode invoquée lors de la
création d'un objet. Cette méthode, qui peutêtre vide, effectue les opérations
nécessaires a l'initialisation d'un objet. Chaque constructeur doit avoir le
même nom que la classe où il est défini et n'a aucune valeur de retour
(c'est l'objet créé qui est renvoyé). Dans l'exemple précédent de la classe
rectangle, le constructeur initialise la valeurdes données encapsulées,

Plusieurs constructeurs peuvent être définis s'ils acceptent des paramètres
d'entrée différents.

Introduction au langage Java
41

5. Instanciation
Un objet est une instance (anglicisme signifiant <<cas .> ou << exemple .>)

d'une classe et est référencé par une variable ayant un état (ou valeur). Pour
créer un objet, il est nécessaire de déclarer une variable dont le type est la
classe a instancier, puis de faire appel a un constructeur de cette classe.
L'exemple ci-dessous illustre la création d'un objet de classe Cercle en Java

Instanciation sans paramètres d’entrées
Cercle mon_rond;
mon_rond = new Cercle();

Instanciation avec paramètres d’entrées

Rectangle mon_rectangle = new Rectangle(15,5);

Introduction au langage Java
42

6. Accès aux variables et aux méthodes (1)
Pour accéder a une variable associée a un objet, il faut préciser l'objet qui la

contient. Le symbole '.' sert a séparer l'identificateur de l'objet de
l'identificateur de la variable. Une copie de la longueur d'un rectangle dans un
entier temp s'écrit ~

int temp = mon_rectangle.longueur;

La même syntaxe est utilisée pour appeler une méthode d'un
objet. Par exemple ~

mon_rectangle.deplace(10,-3);

Introduction au langage Java
43

6. Accès aux variables et aux méthodes (2)
Pour référencer l'objet "courant" (celui dans lequel se situe la ligne de code),

le langage Java fournit le mot-clé this. Celui-ci n'a pas besoin d'être instancié
et s'utilise comme une variable désignant l'objet courant. Le mot-clé this est
également utilisé pour faire appel a un constructeur de l'objet courant. Ces
deux utilisations possibles de this sont illustrées dans l'exemple suivant ~

class Carre {
int cote ;
int or ig ine_x;
int or ig ine_y;

C a r r e (int c o t e , int x , int y) {
this.cote = cote;
this.or ig ine_x = x ;
this.or ig ine_y = y;

}
Carre(int cote) {
// this.cote = cote; this.or igine_x = 0 ; this.or ig ine_y = 0 ;

this(co te , 0 , 0) ;
}

}

Chapitre 3 :

1. Historique du langage Java

2. Caractéristiques du langage Java

3. Exemple d’une application Java

4. Les bases du langage

44

ZIDANII ®

Syntaxe du langage Java

Syntaxe du langage Java

 Tout programme (grand ou petit, simple ou complexe)
contient (ou devrait contenir) des commentaires.

 Ils ont pour but d'expliquer :

 Ce qu'est sensé faire le programme,

 Les conventions adoptées,

 Tout autre information rendant le programme lisible à soi
même et surtout à autrui.

 Java dispose de trois types de commentaires :

 Les commentaires multi-lignes,

 Les commentaires lignes,

 Les commentaires de type documentation.

45

1. Les commentaires (1)

Syntaxe du langage Java

 Commentaires en lignes

Les commentaires lignes débutent avec les symboles « // » et
qui se terminent à la fin de la ligne.

// Ce programme imprime la chaîne

// de caractères " bonjour " à l'écran

...

Ils sont utilisés pour des commentaires courts qui tiennent sur
une ligne.

46

1. Les commentaires (2)

Syntaxe du langage Java

 Commentaires multilingues :

Un commentaire multiligne commence par les caractères « /* » et
se terminent par « */ »

/* Ce programme imprime la chaîne

de caractères "bonjour" à l'écran

*/

 A l'intérieur de ces délimiteurs toute suite de caractères est
valide (sauf évidemment « */ »).

47

1. Les commentaires (3)

Commentaires de types documentation :

 Ces commentaires, appelés aussi commentaires javadoc, servent à
documenter les classes que l'on définit.

 Ces commentaires sont encadrés entre ``/**'' et ``*/'' .

/** Documentation de la classe .

*/

 Java exige que ces commentaires figurent avant la définition de la
classe, d'un membre de la classe ou d'un constructeur.

 Ces commentaires servirons à produire automatiquement (avec
l'outil javadoc) la documentation sous forme HTML à l'image de la
documentation officielle de SUN.

48
Syntaxe du langage Java

1. Les commentaires (4)

49

2. Les types de données (1)

Syntaxe du langage Java

50
Syntaxe du langage Java

2. Les types de données (2)

 Le type booléen

Ce type accepte seulement deux états :

 l'un est nommé TRUE : Symbolise un état d'acceptation,

 l'autre, nommé FALSE, Symbolise un état de réfutation.

51
Syntaxe du langage Java

2. Les types de données (3)

 Le type Caractère

 Ce type, introduit par le mot clé char, et permet la gestion des
caractères.

 Java utilise le codage de caractères universel Unicode qui est
un extension du codage ASCII.

 Le codage ASCII utilise 8 bits et permet de représenter
seulement 128 caractères.

 Le codage Unicode permet la portabilité du code produit.

Il utilise 16 bits pour représenter un caractère.

 65536 caractères possibles.

 Codage des caractères d’alphabets Cyrillique, Hébreux, Arabe,
Chinois, Grec, ...

52
Syntaxe du langage Java

2. Les types de données (4)

 Syntaxe :

Type identificateur [= constante ou expression];

 Exemples :

• int NbredeMois = 12 ;

• int NbredeMois = 4*3 ;

• boolean Unboolean = false ;

• float Unfloatant = 1.3f ;

• double Undouble = 1.3 ;

• char Uncaractère = 'c' ;

• String Unstring= " bonjour " ;

 Et éventuellement, un « modificateur d’accès ou de visibilité » :

final float pi=3.14159

53

3. Déclaration et initialisation des variables

Syntaxe du langage Java

 ++ et -- peuvent préfixer ou postfixer la variable.

 i = j++ : post-incrémentation

La valeur en cours de j est affectée à i et ensuite la valeur de j est
incrémentée de 1.

 i = ++ j : pré-incrémentation

La valeur en cours de j est incrémentée de 1 et ensuite la valeur de j
est affectée à i.

54

4. Les opérateurs (1)

Syntaxe du langage Java

55

4. Les opérateurs (2)

Syntaxe du langage Java

 Le résultat d'une comparaison est une valeur booléenne (vrai ou faux)

 Dans le langage Java, le résultat d'une comparaison est True ou False

56

4. Les opérateurs (3)

Syntaxe du langage Java

57

4. Les opérateurs (4)

Syntaxe du langage Java

 L’opérateur ternaire

Cette expression est une sorte de si-alors-sinon sous forme
d'expression :

 a = (condition e) ? x : y

 si la condition e est vraie alors a vaut x sinon elle vaut y.

 Exemple : a = (v==2) ? 1 : 0;

 Cette expression affecte à la variable a la valeur 1 si v vaut 2,
sinon affecte à la variable a la valeur 0.

58

4. Les opérateurs (5)

Syntaxe du langage Java

59

5. Structure de contrôle: if (1)

Syntaxe du langage Java

60

5. Structure de contrôle: if – else (2)

Syntaxe du langage Java

61

5. Structure de contrôle: if – else – if (3)

Syntaxe du langage Java

62

5. Structure de contrôle: switch (4)

Syntaxe du langage Java

Fonctionnement :

 initialisation du compteur,

 comparaison avec max,

 réalisation des instructions,

 Incrémentation du compteur et on recommence.

63

6. Structure Itérative: for (1)

Syntaxe du langage Java

Utilisation :

 Pour ignorer le reste de la boucle et reprendre l’exécution à

 l’itération suivante de la boucle.

64

6. Structure Itérative: for (continue) (2)

Syntaxe du langage Java

65

6 Structure Itérative: while (3)

Syntaxe du langage Java

66

6 Structure Itérative: do-while (4)

Syntaxe du langage Java

Utilisation :

Pour sortir d’une structure de boucle avant que la condition du test soit remplie.

 Quand la boucle rencontre une instruction break, elle se termine
immédiatement en ignorant le code restant.

67

6 Structure Itérative: while (break) (5)

Syntaxe du langage Java

Il y a 2 catégories de conversions possibles :

1. Conversions explicites :

celles faites sur une demande explicite par un programmeur.

2. Conversions implicites :

celles faites automatiquement par un compilateur :

 lors d'une affectation,

 lors d'une opération arithmétique,

 lors d'un passage de paramètres (lors de l'invocation d'une
méthode)

68

7 Les conversions des types (1)

Syntaxe du langage Java

Conversion explicite :

 Objectif :

Changer le type d'une donnée si besoin.

 Comment ? :

Préfixer l’opérande par le type choisi.

Encadrer le type choisi par des parenthèses.

 Exemple :

char c = ’5’ ;

int l = (int) c ;

69

7 Les conversions des types (2)

Syntaxe du langage Java

 Déclaration d’un tableau à une dimension :

 Syntaxe :

<Type> <nom_tableau> [] ;

ou encore :

<Type> [] <nom_tableau> ;

 Exemple :

int [] Notes ; // Ou : int Notes [] ;

 Création d’un tableau à une dimension :

 Syntaxe :

<Nom_tableau> = new <type> [<dimension>] ;

 Exemple :

Notes = new int[50];

float T[]= new float[20];

70

8 Les tableaux (1)

Syntaxe du langage Java

 Utilisation d’un tableau à une dimension :

L’accès à un élément d’un tableau :

 Le premier élément commence à l’indice 0

 Le dernier élément a pour indice (n-1) (n étant la dimension
du tableau)

Exemple :

Notes[0] = 15 ;

System.out.println(Notes[3]);

La taille d’un tableau est contenue dans une variable prédéfini :

« length » :

int taille = Notes.length;

71

8 Les tableaux (2)

Syntaxe du langage Java

 Déclaration d’un tableau bidimensionnel:

 Syntaxe :

<Type> <nom_tableau> [] [];

ou encore :

<Type> [] []<nom_tableau> ;

 Exemple :

int [][] Matrice ;

 Création d’un tableau à 2 dimensions :

 Syntaxe :

<Nom_tableau> = new <type> [<dimension 1>] [<dimension 2>] ;

 Exemple :

Matrice = new int[3][4];

72

8 Les tableaux (3)

Syntaxe du langage Java

 Exemple d’utilisation :

73

8 Les tableaux (4)

Syntaxe du langage Java

public class Somme {

public static void main(String[] args)

{

int a = Integer.parseInt(args[0]);

int b = Integer.parseInt(args[1]);

int S = a + b ;

System.out.println(‘ La somme est ‘ + S);

}

}

74

9 Lecture des valeurs entrées par arguments (1)

Syntaxe du langage Java

import java.util.*;

public class ExempleScanner{

public static void main (String [] args) {

Scanner S = new Scanner(System.in);

System.out.println("Donner deux entiers");

int a = S.nextInt();

int b = S.nextInt(); S.close();

if (a>b)

System.out.println(a + " est plus grand que " + b);

else if(b>a)

System.out.println(b + " est plus grand que " + a);

else

System.out.println(" Egalité ");

}}

75
9 Lecture des valeurs entrées au clavier (2)

Syntaxe du langage Java

public class Somme {

public static void main(String[] args) {

BufferedReader br=new BufferedReader(new InputStreamReader(System.in));

System.out.println(« Donner aa»);

String aa=br.readLine();//lire la chaine aa

int a =Integer.parseInt(aa.trim());

System.out.println(« Donner bb»);

String bb=br.readLine();//lire la chaine aa

int b =Integer.parseInt(bb.trim());

int S = a + b ;

System.out.println(« La somme est » + S);

} }

76

9 Lecture des valeurs entrées au clavier (3)

Syntaxe du langage Java

