

12

public class HelloWorld {
public static void main(String[] args) {

System.out.println(”Hello world”);
}

}

☛ Remarque : le tableau de chaînes de caractères args qui est un paramètre d’entrée de la
méthode main contient des valeurs précisées à l’exécution.

☛ Remarque importante : il est obligatoire d’implémenter chaque classe publique dans un

Chapitre 4

Éléments de programmation Java

I. Premiers pas
Un programme écrit en Java consiste en un ensemble de classes représentant les éléments

manipulés dans le programme et les traitements associés. L’exécution du programme commence par
l’exécution d’une classe qui doit implémenter une méthode particulière “public static void
main(String[] args)”. Les classes implémentant cette méthode sont appelées classes
exécutables.

1. Classe HelloWorld
Une classe Java HelloWorld qui affiche la chaîne de caractères “Hello world” s’écrit :

L’exécution (après compilation) de cette classe se fait de la manière suivante :
C:\>java HelloWorld
Hello world
C:\>

Dans ce premier programme très simple, une seule classe est utilisée. Cependant, la
conception d’un programme orienté-objet nécessite, pour des problèmes plus complexes, de créer
plusieurs classes et la classe exécutable ne sert souvent qu’à instancier les premiers objets. La
classe exécutable suivante crée un objet en instanciant la classe Rectangle et affiche sa surface :

 fichier séparé et il est indispensable que ce fichier ait Je même nom que celui de la classe. Dans
 le cas précédent, deux fichiers ont ainsi été créés : RectangleMain.java et Rectangle.java.

2. Packages
Un grand nombre de classes, fournies par Java SE, implémentent des données et traitements

génériques utilisables par un grand nombre d’applications. ces classes forment l’API (Application
Programmer Interface) du langage Java. Une documentation en ligne pour l’API java est disponible
à l’URL :

public class RectangleMain {
public static void main(String[] args) {

Rectangle rect = new Rectangle(5, 10);
System.out.println(”La surface est ” + rect.surface());

}
}

13

import java.util.Date ;

public class DateMain {

public static void main(String[] args) {
Date today = new Date();
System.out.println(”Nous sommes le ” + today.toString());

}
}

package fr.emse ;

import java.util.Date ;

public class DateMain {

...
}

http://docs.oracle.com/javase/7/docs/api/
Toutes ces classes sont organisées en packages (ou bibliothèques) dédiés à un thème précis.

Parmi les packages les plus utilisés, on peut citer les suivants :

Package Description
java.awt classes graphiques et de gestion d’interfaces
java.io Gestion des entrées/sorties
java.lang classes de base (importé par défaut)
java.util classes utilitaires
javax.swing Autres classes graphiques

Pour accéder à une classe d’un package donné, il faut préalablement importer cette classe ou
son package. Par exemple, la classe Date appartenant au package java.util qui implémente un
ensemble de méthodes de traitement sur une date peut être importée de deux manières :

● une seule classe du package est importée :

 import java.util.Date ;

● toutes les classes du package sont importées (même les classes non utilisées) :
 import java.util.* ;

Le programme suivant utilise cette classe pour afficher la date actuelle :

Il est possible de créer vos propres packages en précisant, avant la déclaration d’une classe, le package
auquel elle appartient. Pour assigner la classe précédente à un package, nommé fr.emse, il faut modifier
le fichier de cette classe comme suit :

Enfin, il faut que le chemin d’accès du fichier DateMain.java corresponde au nom de son package.
Celui-ci doit donc être situé dans un répertoire fr/emse/DateMain.java accessible à partir des
chemins d’accès définis lors de la compilation ou de l’exécution.

14

II. Variables et méthodes
1. Visibilité des champs

Dans les exemples précédents, le mot-clé public apparaît parfois au début d’une déclaration
de classe ou de méthode sans qu’il ait été expliqué jusqu’ici. ce mot-clé autorise n’importe quel
objet à utiliser la classe ou la méthode déclarée comme publique. La portée de cette autorisation
dépend de l’élément à laquelle elle s’applique (voir le tableau 1).

Tableau 1 – Portée des autorisations

Élément Autorisations
Variable Lecture et écriture
Méthode Appel de la méthode
classe Instanciation d’objets de cette classe et

accès aux variables et méthodes de classe

Le mode public n’est, bien sûr, pas le seul type d’accès disponible en Java. Deux autres mots clés
peuvent être utilisés en plus du type d’accès par défaut : protected et private. Le tableau 2 récapitule
ces différents types d’accès.

Tableau 2 – Autorisations d’accès

 public protected défaut Private

Dans la même classe Oui Oui Oui Oui
Dans une classe du même package Oui Oui Oui Non

Dans une sous-classe d’un autre package Oui Oui Non Non

Dans une classe quelconque d’un autre package Oui Non Non Non

Si aucun mot-clé ne précise le type d’accès, celui par défaut est appliqué. En général, il est
souhaitable que les types d’accès soient limités et le type d’accès public, qui est utilisé
systématiquement par les programmeurs débutants, ne doit être utilisé que s’il est indispensable.
Cette restriction permet d’éviter des erreurs lors d’accès à des méthodes ou de modifications de
variables sans connaître totalement leur rôle.

2. Variables et méthodes de classe
Dans certains cas, il est plus judicieux d’attacher une variable ou une méthode à une classe

plutôt qu’aux objets instanciant cette classe. Par exemple, la classe java.lang.integer possède
une variable MAX_VALUE qui représente la plus grande valeur qui peut être affectée à un entier.
Or, cette variable étant commune à tous les entiers, elle n’est pas dupliquée dans tous les objets
instanciant la classe integer mais elle est associée directement à la classe integer. Une telle
variable est appelée variable de classe. De la même manière, il existe des méthodes de classe
qui sont associées directement à une classe. Pour déclarer une variable ou méthode de classe, on
utilise le mot-clé static qui doit être précisé avant le type de la variable ou le type de retour de
la méthode.

15

public final class Math {
...
public static final double Pi = 3.14159265358979323846 ;
...
public static double toRadians(double angdeg) {

return angdeg / 180.0 * Pi ;
}
...

}

public class MathMain {
public static void main(String[] args) {

System.out.println(”pi = ” + Math.Pi);
System.out.println(”90° = ” + Math.toRadians(90));

}
}

➲ Question : Dans les sections précédentes, nous avons déjà utilisé une variable de classe et une
méthode de classe. Pouvez-vous trouver lesquelles ?

La classe java.lang.Math nous fournit un bon exemple de variable et de méthodes de classes.

La classe Math fournit un ensemble d’outils (variables et méthodes) très utiles pour des
programmes devant effectuer des opérations mathématiques complexes. Dans la portion de
classe reproduite ci-dessus, on peut notamment y trouver une approximation de la valeur de π et
une méthode convertissant la mesure d’un angle d’une valeur en degrés en une valeur en
radians. Dans le cas de cette classe, il est tout à fait inutile de créer et d’instancier un objet à
partir de la classe Math. En effet, la valeur de π ou la conversion de degrés en radians ne vont
pas varier suivant l’objet auquel elles sont rattachées. Ce sont des variables et des méthodes de
classe qui peuvent être invoquées à partir de toute autre classe (car elles sont déclarées en accès
public) de la manière suivante :

➡ Réponse:
● la méthode main des classes exécutables est une méthode de classe car elle est appelée

directement à partir d’une classe ;
● lors de l’affichage d’une chaîne de caractères à l’écran par l’instruction
System.out.println(…), on fait appel à la variable out de la classe java.lang.System
qui est un objet représentant la sortie standard (l’écran) et sur laquelle on appelle la
méthode println permettant d’afficher une chaîne de caractères.

16

Chapitre 5

Héritage

Dans certaines applications, les classes utilisées ont en commun certaines variables,
méthodes de traitement ou même des signatures de méthode. Avec un langage de
programmation orienté-objet, on peut définir une classe à différent niveaux d’abstraction
permettant ainsi de factoriser certains attributs communs à plusieurs classes. Une classe
générale définit alors un ensemble d’attributs qui sont partagés par d’autres classes, dont on dira
qu’elles héritent de cette classe générale. Par exemple, les classes Carre et Rectangle peuvent
partager une méthode surface() renvoyant le résultat du calcul de la surface de la figure.
Plutôt que d’écrire deux fois cette méthode, on peut définir une relation d’héritage entre les
classes Carre et Rectangle. Dans ce cas, seule la classe Rectangle contient le code de la
méthode surface() mais celle-ci est également utilisable sur les objets de la classe Carre si elle
hérite de Rectangle.

I. Principe de l’héritage
L’idée principale de l’héritage est d’organiser les classes de manière hiérarchique. La

relation d’héritage est unidirectionnelle et, si une classe B hérite d’une classe A, on dira que B est
une sous-classe de A. cette notion de sous-classe signifie que la classe B est un cas particulier de
la classe A et donc que les objets instanciant la classe B instancient également la classe A.

Prenons comme exemple des classes Carre, Rectangle et Cercle. La figure 7 propose
une organisation hiérarchique de ces classes telle que Carre hérite de Rectangle qui hérite,
ainsi que Cercle, d’une classe Forme.

Figure 7 – Exemple de relations d’héritage

Pour le moment, nous considérerons la classe Forme comme vide (c’est-à-dire sans aucune
variable ni méthode) et nous nous intéressons plus particulièrement aux classes Rectangle et
Carre.

La classe Rectangle héritant d’une classe vide, elle ne peut profiter d’aucun de ses attributs et doit
définir toutes ses variables et méthodes. Une relation d’héritage se définit en Java par le mot-clé
extends utilisé comme dans l’exemple suivant :

17

public class Rectangle extends Forme {

private int largeur ;
private int longueur ;
public Rectangle(int x, int y) {

this.largeur = x ;
this.longueur = y ;

}
public int getLargeur() {

return this.largeur ;
}
public int getLongueur() {

return this.longueur ;
}
public int surface() {

return this.longueur * this.largeur ;
}
public void affiche() {

System.out.println(”Rectangle ” + longueur + ”x” + largeur);
}

}

public Carre(int cote) {
super(cote,cote);

}

En revanche, la classe Carre peut bénéficier de la classe Rectangle et ne
nécessite pas la réécriture de ces méthodes si celles-ci conviennent à la sous-classe.
Toutes les méthodes et variables de la classe Rectangle ne sont néanmoins pas
accessibles dans la classe Carre. Pour qu’un attribut puisse être utilisé dans une sous-
classe, il faut que son type d’accès soit public ou protected, ou, si les deux classes sont
situées dans le même package, qu’il utilise le type d’accès par défaut. Dans cet exemple,
les variables longueur et largeur ne sont pas accessibles dans la class Carre qui doit
passer par les méthodes getLargeur() et getLongueur(), déclarées comme publiques.

1. Redéfinition

L’héritage intégral des attributs de la classe Rectangle pose deux problèmes :

1. il faut que chaque carré ait une longueur et une largeur égales ;

2. la méthode affiche écrit le mot “rectangle” en début de chaîne. Il serait
souhaitable que ce soit “carré” qui s’affiche.

De plus, les constructeurs ne sont pas hérités par une sous-classe. Il faut donc écrire un
constructeur spécifique pour Carre. Ceci nous permettra de résoudre le premier problème en
écrivant un constructeur qui ne prend qu’un paramètre qui sera affecté à la longueur et à la
largeur. Pour attribuer une valeur à ces variables (qui sont privées), le constructeur de Carre
doit faire appel au constructeur de Rectangle en utilisant le mot-clé super qui fait appel au
constructeur de la classe supérieure comme suit :

18

☛ Remarque:
● L’appel au constructeur d’une classe supérieure doit toujours se situer dans un constructeur et toujours

en tant que première instruction ;
● Si aucun appel à un constructeur d’une classe supérieure n’est fait, le constructeur fait appel

implicitement à un constructeur vide de la classe supérieure (comme si la ligne super() était présente).
Si aucun constructeur vide n’est accessible dans la classe supérieure, une erreur se produit lors de la
compilation.

public class Carre extends Rectangle {
public Carre(int cote) {

super(cote, cote);
}
public void affiche() {

System.out.println(”carré ” + this.getLongueur());
}

}

for (int i = 0 ; i < tableau.length ; i++) {
if (tableau[i] instanceof Forme)

System.out.println(”element ” + i + ” est une forme”);
if (tableau[i] instanceof Cercle)
System.out.println(”element ” + i + ” est un cercle”);
if (tableau[i] instanceof Rectangle)

System.out.println(”element ” + i + ” est un rectangle”);
if (tableau[i] instanceof Carre)

System.out.println(”element ” + i + ” est un carré”);
}

Le second problème peut être résolu par une redéfinition de méthode. On dit qu’une
méthode d’une sous-classe redéfinit une méthode de sa classe supérieure, si elles ont la même
signature mais que le traitement effectué est réécrit dans la sous-classe. Voici le code de la
classe Carre où sont résolus les deux problèmes soulevés :

Lors de la redéfinition d’une méthode, il est encore possible d’accéder à la méthode
redéfinie dans la classe supérieure. Cet accès utilise également le mot-clé super comme préfixe à
la méthode. Dans notre cas, il faudrait écrire super.affiche() pour effectuer le traitement de
la méthode affiche() de Rectangle.

Enfin, il est possible d’interdire la redéfinition d’une méthode ou d’une variable en
introduisant le mot-clé final au début d’une signature de méthode ou d’une déclaration de
variable. Il est aussi possible d’interdire l’héritage d’une classe en utilisant final au début de
la déclaration d’une classe (avant le mot-clé class).

2. Polymorphisme
Le polymorphisme est la faculté attribuée à un objet d’être une instance de plusieurs

classes. Il a une seule classe “réelle” qui est celle dont le constructeur a été appelé en premier
(c’est-à-dire la classe figurant après le new) mais il peut aussi être déclaré avec une classe
supérieure à sa classe réelle. Cette propriété est très utile pour la création d’ensembles
regroupant des objets de classes différentes comme dans l’exemple suivant :

L’opérateur instanceof peut être utilisé pour tester l’appartenance à une classe comme suit :

Forme[] tableau = new Forme[4];
tableau[0] = new Rectangle(10,20);
tableau[1] = new Cercle(15);
tableau[2] = new Rectangle(5,30);
tableau[3] = new Carre(10);

19

for (int i = 0 ; i < tableau.length ; i++) {
tableau[i].affiche();

}

L’exécution de ce code sur le tableau précédent affiche le texte suivant :
element[0] est une forme
element[0] est un rectangle
element[1] est une forme
element[1] est un cercle
element[2] est une forme
element[2] est un rectangle
element[3] est une forme
element[3] est un rectangle
element[3] est un carré

L’ensemble des classes Java, y compris celles écrites en dehors de l’API, forme une
hiérarchie avec une racine unique. Cette racine est la classe Object dont hérite toute autre
classe. En effet, si vous ne précisez pas explicitement une relation d’héritage lors de l’écriture
d’une classe, celle-ci hérite par défaut de la classe Object. Grâce à cette propriété, des classes
génériques ¹ de création et de gestion d’un ensemble, plus élaborées que les tableaux,
regroupent des objets appartenant à la classe Object (donc de n’importe quelle classe).

Une des propriétés induites par le polymorphisme est que l’interpréteur Java est
capable de trouver le traitement à effectuer lors de l’appel d’une méthode sur un objet. Ainsi,
pour plusieurs objets déclarés sous la même classe (mais n’ayant pas la même classe réelle), le
traitement associé à une méthode donné peut être différent. Si cette méthode est redéfinie par la
classe réelle d’un objet (ou par une classe située entre la classe réelle et la classe de déclaration),
le traitement effectué est celui défini dans la classe la plus spécifique de l’objet et qui redéfinie
la méthode.

Dans notre exemple, la méthode affiche() est redéfinie dans toutes les sous-classes de
Forme et les traitements effectués sont :

Résultat :
rectangle 10x20
cercle 15

rectangle 5x30

carré 10

Dans l’état actuel de nos classes, ce code ne pourra cependant pas être compilé. En
effet, la fonction affiche() est appelée sur des objets dont la classe déclarée est Forme mais
celle-ci ne contient aucune fonction appelée affiche() (elle est seulement définie dans ses
sous-classes). Pour compiler ce programme, il faut transformer la classe Forme en une
interface ou une classe abstraite tel que cela est fait dans les sections suivantes.

II. Interfaces
Une interface est un type, au même titre qu’une classe, mais abstrait et qui donc ne

peut être instancié (par appel à new plus constructeur). Une interface décrit un ensemble de
signatures de méthodes, sans implémentation, qui doivent être implémentées dans toutes les
classes qui implémentent l’interface. L’utilité du concept d’interface réside dans le
regroupement de plusieurs classes, tel que chacune implémente un ensemble commun de

20

public interface Forme {
public int surface() ;
public void affiche() ;

}

public class Rectangle implements Forme {
...

}

public class Cercle implements Forme {
...

}

méthodes, sous un même type. Une interface possède les caractéristiques suivantes :
● elle contient des signatures de méthodes ;
● elle ne peut pas contenir de variables ;
● une interface peut hériter d’une autre interface (avec le mot-clé extends) ;
● une classe (abstraite ou non) peut implémenter plusieurs interfaces. La liste des

interfaces implémentées doit alors figurer après le mot-clé implements placé
dans la déclaration de classe, en séparant chaque interface par une virgule.

Dans notre exemple, Forme peut être une interface décrivant les méthodes qui doivent
être implémentées par les classes Rectangle et Cercle, ainsi que par la classe Carre (même si
celle-ci peut profiter de son héritage de Rectangle). L’interface Forme s’écrit alors de la manière
suivante :

Pour obliger les classes Rectangle, Cercle et Carre à implémenter les méthodes
surface() et affiche(), il faut modifier l’héritage de ce qui était la classe Forme en une
implémentation de l’interface définie ci-dessus :

et

Cette structure de classes nous permet désormais de pouvoir compiler l’exemple
donné dans la section précédente traitant du polymorphisme. En déclarant un tableau
constitué d’objets implémentant l’interface Forme, on peut appeler la méthode affiche()
qui existe et est implémentée par chaque objet.
Si une classe implémente une interface mais que le programmeur n’a pas écrit
l’implémentation de toutes les méthodes de l’interface, une erreur de compilation se
produira sauf si la classe est une classe abstraite.

III. Classes abstraites
Le concept de classe abstraite se situe entre celui de classe et celui d’interface.

C’est une classe qu’on ne peut pas directement instancier car certaines de ses méthodes
ne sont pas implémentées. Une classe abstraite peut donc contenir des variables, des
méthodes implémentées et des signatures de méthode à implémenter. Une classe
abstraite peut implémenter (partiellement ou totalement) des interfaces et peut hériter
d’une classe ou d’une classe abstraite.

Le mot-clé abstract est utilisé devant le mot-clé class pour déclarer une classe

21

public abstract class Forme {
private int origine_x ;
private int origine_y ;

public Forme() {

this.origine_x = 0 ;
this.origine_y = 0 ;

}
public int getOrigineX() {

return this.origine_x ;
}
public int getOrigineY() {

return this.origine_y ;
}
public void setOrigineX(int x) {

this.origine_x = x ;
}
public void setOrigineY(int y) {

this.origine_y = y ;
}
public abstract int surface();
public abstract void affiche();

}

public class Rectangle extends Forme {
...

}

public class Cercle extends Forme {
...

}

abstraite, ainsi que pour la déclaration de signatures de méthodes à implémenter.
Imaginons que l’on souhaite attribuer deux variables, origine_x et origine_y, à tout
objet représentant une forme. Comme une interface ne peut contenir de variables, il
faut transformer Forme en classe abstraite comme suit :

De plus, il faut rétablir l’héritage des classes Rectangle et Cercle vers Forme :

et

Lorsqu’une classe hérite d’une classe abstraite, elle doit :
● soit implémenter les méthodes abstraites de sa super-classe en les dotant d’un corps ;
● soit être elle-même abstraite si au moins une des méthodes abstraites de sa super-

classe reste abstraite.

22

package java.util ;

public class ArrayList<E> extends AbstractList<E> implements

List<E>, ...
{

...
public E set(int index, E element) {

...
}

public boolean add(E e) {

...
}
...

}

IV. Classes et méthodes génériques

Il est parfois utile de définir des classes paramétrées par un type de données (ou une classe).
Par exemple, dans le package java.util, de nombreuses classes sont génériques et
notamment les classes représentant des ensembles (Vector, ArrayList, etc.). Ces classes sont
génériques dans le sens où elles prennent en paramètre un type (classe ou interface) quelconque
E. E est en quelque sorte une variable qui peut prendre comme valeur un type de donné. Ceci se
note comme suit, en prenant l’exemple de java.util.ArrayList :

Nous pouvons remarquer que le type passé en paramètre est noté entre chevrons (ex :
<E>), et qu’il peut ensuite être réutilisé dans le corps de la classe, par des méthodes (ex : la
méthode set renvoie un élément de classe E).
Il est possible de définir des contraintes sur le type passé en paramètre, comme par exemple
une contrainte de type extends (Ici, on utilise T extends E pour signaler que le type T est un sous type
de E, que E soit une classe ou une interface (on n’utilise pas implements).) :

Ceci signifie que la classe SortedList (liste ordonnée que nous voulons définir) est
paramétrée par le type T qui doit être un type dérivé (par héritage ou interfaçage) de
Comparable<T>. En bref, nous définissons une liste ordonnée d’éléments comparables entre
eux (pour pouvoir les trier), grâce à la méthode int compareTo(T o) de l’interface Comparable
S qui permet de comparer un Comparable à un élément de type T.

public class SortedList<T extends Comparable<T>> {
...

}

