
Matière

Algorithmique et
Structure de Données I

Ali ZIDANII

ali.zidanii@gmail.com

ali.zidani@isaeg.u-gafsa.tn

Site web : http://ali-zidanii.e-monsite.com

1ère année Licence en informatique de gestion

« Business Computing »

Enseignant

2024 - 2025

Plan

 Les structures de données et les structures simples
 Les structures conditionnelles
 Les structures itératives
 Les tableaux et les enregistrements
 Les fonctions et les procédures
 La récursivité
 Les pointeurs

Les structures de données et les structures simples

 Définition d’un algorithme
Un algorithme est une suite structurée et finie d’actions (ou
d’instructions ou d’opérations) pour résoudre un problème
donné.
Ces opérations regroupent :

Les opérations arithmétiques et logiques;
L’opération de lecture des données de la mémoire;
L’opération d’écriture des données dans la mémoire;
L’opération de comparaison;
La répétition d’une ou plusieurs opérations plusieurs fois ou un
nombre fini de fois.

3

Les structures de données
 Cycle de vie d’un programme

4

Les structures de données
 Structure générale d’un algorithme

Il peut être présenté sous la structure suivante :

5

Les structures de données
Dont :

 L’en-tête, permet d’identifier l’algorithme (nom facultatif).

 Les déclarations, c’est une liste des objets utilisés et manipulés dans le

corps de l’algorithme ; cette liste est placée en début d’algorithme.

 Le corps, contient les tâches (instructions, opérations…) à exécuter. Une

instruction peut être une structure simple (exemple : affectation ou action

d’écriture/lecture) ou structure conditionnelle (exemple : expression de

comparaison) ou structure répétitive.

6

Remarques :

 Un algorithme est écrit en utilisant un langage de description d’algorithme (LDA).

 L’algorithme ne doit pas être confondu avec le programme.

 Tout algorithme peut contenir des commentaires pour mieux l’interpréter.

Les structures de données

 Déclaration des constantes
Elles représentent des chiffres, des nombres, des caractères, des chaînes
de caractères, …etc. dont la valeur ne peut pas être modifiée au cours
de l’exécution de l’algorithme.

Mot clé : CONST
Exemple : CONST pi =3.14 ; coefalgo=3; creditalgo=6;

 Déclaration des variables
Elles peuvent stocker des chiffres des nombres, des caractères, des
chaînes de caractères,… dont la valeur peut être modifiée au cours
de l’exécution de l’algorithme.

Mot clé : VAR
Exemples : VAR x, y : entier;

ch : chaîne de caractère ;

7

Les structures de données

Remarques

Les constantes et les variables sont définies dans la partie
déclarative par les caractéristiques suivantes :

 L’identificateur : c’est le nom de la variable ou de la
constante. Il est composé de lettres et de chiffres

 Le type : il détermine la nature de la variable ou de la
constante (entier, réel, booléen, chaîne de caractères…)

 Le contenu ou la valeur: qui doit être compatible au type
de la constante ou la variable.

8

Les structures de données

Les types de données
Un type de données est l'ensemble des valeurs que peuvent prendre une variable, une
constante, une expression, ou qui peuvent être générés par une fonction.

Toute variable qui apparaît dans un programme doit être associée à un et un seul
type par une déclaration.

 Les types de base:

L’entier (1, 7, 999),

Le réel (3.14),

Le booléen (VRAI ou FAUX),

Le caractère (symbole, lettre alphabetique , etc ..),

La chaîne de caractères ou chaîne (« bonjour »).

9

Les structures de données

 Les types énumérés (ensemble)

Les types énumérés sont définis par le programmeur. Ils vous permettent de
créer vos propres types, qui consistent en un ensemble de symboles.

Vous créez d'abord l'ensemble de symboles et leur donner un nouveau nom de
type.

Exemple:

Type jour = (Lundi, Mardi, Mercredi, Jeudi, Vendredi, Samedi, Dimanche);

Var jr : jour;

Le premier symbole de cet ensemble a la valeur 0, et chaque symbole successif
est plus grand de un.

NB. Les valeurs du type énuméré ne peuvent pas être introduites à partir du
clavier ou affichées à l'écran.

10

Les structures de données

 Les types intervalles

Un type peut-être défini comme un intervalle de n'importe quel type
scalaire défini ou prédéfini.

Type undouze = 1..12;

Var mois : undouze;

11

Les structures de données

Exemple :

Tout comme vous pouvez créer votre propre ensemble de type prédéfini,
vous pouvez aussi créer un plus petit sous-ensemble ou intervalle d'un
ensemble existant qui a été défini précédemment. Chaque intervalle est
défini par une borne supérieure et une borne inférieure.

Type jour = (Lundi, Mardi, Mercredi, Jeudi, Vendredi, Samedi, Dimanche)
Type Weekday = Lundi..Vendredi ; /*intervalle de jour*/

Type Weekend = Samedi.. Dimanche ; /*intervalle de jour*/

Type Heures = 0..24; /*intervalle d’entier*/

Type Lettre = 'A'..'Z'; /*intervalle de caractères*/

12

Les structures de données
 Application :

Lesquels de ces exemples sont corrects ?

Type Points = 0,5..4,1;

Type Number = entier;

Type Alphabet = 'Z'..'A’;

Réponses

AUCUN n’est correct !!

On ne peut pas avoir d'intervalle de type réel.

On ne peut pas le faire, on doit avoir des bornes numériques.

On ne peut pas le faire, on doit écrire Alphabet= 'A'..'Z' parce que 'A' vient
avant 'Z‘.

13

Les structures de données

 Les opérateurs :

 Opérateurs sur les entiers et les réels

14

Les structures de données

15

 Les opérateurs :

 Opérateurs logiques (sur les entiers et les booléens)

Les structures de données

16

 Opérateurs sur les caractères et les chaines de caractères

+ : Concaténation ;
= : Egalité ;
≠ : Différent ;
> : Supérieur ;
< : Inférieur
Exemple: ‘alpha’ + ’numérique’ donne après concaténation : ‘alphanumérique’
Priorité des opérateurs :
La priorité des différents opérateurs, de la plus élevée à la plus basse, est :

NON
*, /, DIV, MOD, ET
+, -, OU
=, != <>, <, <=, >, >=, DANS OU APPARTIENT (IN)

Remarque :
Au sein d'une même priorité, les opérateurs sont toujours évalués de gauche à
droite. Utiliser les parenthèses pour éviter le problème de priorité des
opérateurs.

Les structures simples

On distingue trois structures simples:

 L’affectation

 La lecture

 L’écriture

17

a-

Algorithme a1

Var A, B, C : Entier

Début

Les structures simples

Exemples :

 L’affectation

 La lecture

 L’écriture

18

a- Affectation

B  5;

X  "g";

F  2.5;

a- Lecture

Lire(B);

Lire(X);

Lire(F);

a- Écriture

Ecrire(" Donner un entier ");

Ecrire("la valeur de X=" ,X);

Ecrire(" F=", F);

Les structures de données et les structures simples

 Applications:

Quelles seront les valeurs des variables A, B et C après exécution des
instructions suivantes?

19

a-

Algorithme a1

Var A, B, C : Entier

Début

A ← 5; écrire(A);

B ← 3; écrire(B);

C ← A + B ; écrire(C);

A ← 2 ; écrire(A);

C ← B – A ; écrire(C);

Fin

b-

Algorithme a2

Variables A, B, C en Entier

Début

A ← 3 ; écrire(A);

B ← 10 ; écrire(B);

C ← A + B ; écrire(C);

B ← A + B ; écrire(B);

A ← C ; écrire(A);

Fin

Plan

 Les structures de données
 Les structures conditionnelles
 Les structures itératives
 Les tableaux et les enregistrements
 Les fonctions et les procédures
 La récursivité
 Les pointeurs

Les structures conditionnelles
Les structures algorithmiques fondamentales

Les opérations élémentaires relatives à la résolution d’un problème
peuvent, en fonction de leur enchaînement être organisées suivant quatre
familles de structures algorithmiques fondamentales.

* structures linéaires

* structures alternatives (Conditionnelle)

* structures de choix

* structures itératives (ou répétitives)

 Les structures linéaires

La structure linéaire se caractérise par une suite d’actions à exécuter
successivement dans l’ordre énoncé.

Ecrire ("c’est un exemple") ;

21

Les structures conditionnelles
 Les structures alternatives ou conditionnelles

La structure alternative n’offre que deux issues possibles à la poursuite de
l’algorithme et s’excluant mutuellement.

On peut rencontrer deux types de structures alternatives :

Structure alternative réduite

La structure alternative réduite se distingue de la précédente par le
fait que seule la situation correspondant à la validation de la condition
entraîne l’exécution du traitement, l’autre situation conduisant
systématiquement à la sortie de la structure.

 Notation :

SI condition alors

Action ;

Fin si ;22

Les structures conditionnelles

 Structure alternative complète

Dans cette structure l’exécution d’un des deux traitements distincts ne dépend que
du résultat d’un test effectué sur la condition qui peut être une variable ou un
événement ;

Si la condition est vérifiée seul le premier traitement est exécuté ;

Si la condition n’est pas vérifiée seul est effectué le second traitement.

 Notation :

SI condition alors

action1 ;

Sinon

action2 ;

Fin si ;

23

Les structures conditionnelles

 Structure alternative généralisée

 Notation :

SI condition1 alors

action1 ;

Sinon si condition2

action2 ;

………

Sinon

Action3;

Fin si ;

24

Les structures conditionnelles

 Les structures de choix

La structure de choix permet, en fonction de plusieurs conditions de type booléen,
d’effectuer des actions différentes suivant les valeurs que peut prendre une même
variable. RQ: Sinon (default) est facultatif

 Notation :

selon valeur faire

valeur1 : action1 ;

valeur2 : action2 ;

……..

valeur_N : action_N ;

sinon action_N+1 ;

Fin selon ;

25

en C
switch (valeur){
case valeur1 : action1; break;
case valeur2 : action2; break;
……….
case valeur_n : action_n; break;
default action_n+1;
}

